B 270[®] i Ultra-White Glass

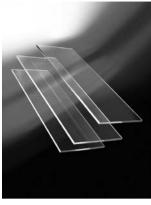
Product Information

SCHOTT offers B 270® i crown glass in sheet form, suitable for a variety of different applications such as biotech, consumer and industrial optics.

B 270° i glass is manufactured by using a special up-draw process developed by SCHOTT. Raw materials with a low iron oxide content ensure an ultra-white appearance.

The crown glass is available in a wide thickness range of 0.9 mm to 10.0 mm and various stock formats. Customized formats and processing can be offered upon request.

Features and Benefits


- Constantly high transmittance across a wide spectrum
- Ultra-white appearance and optical clarity (no iron absorption edge vs. Soda Lime glass)
- Tight, homogenous refractive index
- · High solarization stability and chemical resistance
- Fire polished surfaces in drawn target thicknesses without additional polishing
- · Certified biocompatibility
- Easy to process

Potential Applications

Biotech

B 270° i is perfectly suited for biotech applications due to its high transmittance, ultra-white appearance and its certified biocompatibility.

- Lab-on-a-chip
- Laboratory & coating substrates

Consumer & Industrial Optics

Applications in consumer & industrial optics require glass with good solarization stability, high transmittance and cost-efficient processing.

- Optical filters for photography
- 3D polarizer glass
- Display & touch cover
- Action camera case
- Consumer glasses and goggles

Technical Data	
Dimensions	1680 mm \times 900 mm, 900 mm \times 840 mm, 406 mm \times 258 mm other formats upon request
Standard thicknesses	0.9, 1.0, 1.65, 2.0, 2.3, 2.5, 3.0, 3.5, 4.0, 5.0, 10.0 mm other thicknesses upon request

Mechanical properties		
Density $ ho$	in g/cm³	2.56
Young's modulus E	in kN/mm²	71,1
Poisson's ratio μ		0.22
Torsion modulus G	in kN/mm²	29
Knoop hardness	HK 0.1/20	500
Vickers hardness	HV 0.2/25	510

B 270[®] i Ultra-White Glass

Thermal properties		
CTE (Coefficient of thermal expansion) α	in 10 ⁻⁶ ·K ⁻¹ (20°C; 300°C)	9.4
Transformation temperature T_g	in °C	542
Mean specific heat capacity c _p	in J/(g·K) (20°C to 100°C)	0.8
Viscosities	Viscosity $\log \eta$ in dPas	Temperature ϑ in °C
Strain point	14.5	507
Annealing point	13.0	535
Softening point	7.6	711

Optical properties		
Refractive indices	$n_{\scriptscriptstyle m g}$	1.5341
Pretreatment of samples	$n_{\scriptscriptstyle F'}$	1.5297
Condition as supplied	$n_{\scriptscriptstyle extsf{F}}$	1.5292
["as drawn"]	n _e	1.5251 ± 0.001
	$n_{\rm d}$	1.5230
	$n_{\scriptscriptstyle m D}$	1.5229
	n _{C'}	1.5207
	n_{c}	1.5203
Abbe value	V_{e}	58.3 ± 0.6

Electrical properties		
Dielectric constant $arepsilon_{\!\scriptscriptstyle{r}}$	at 1 GHz	6.7
Dissipation factor tan δ	at 1 GHz	59 ⋅ 10-4

Chemical properties		
Hydrolytic resistance	Class	HGB 3
(acc. to DIN ISO 719)	Equivalent of alkali per gram glass grains in µg/g	136
Acid resistance	Class	S 2
(acc. to DIN 12116)	Half surface weight loss after 6 hours in mg/dm ²	0.7
Alkali resistance	Class	A 1
(acc. to DIN ISO 695)	Surface weight loss after 3 hours in mg/dm ²	71

	Thickness 2 mm — Thickness 6 mm —
100	
90	
80	
70	
60	
50	
40	
30	
20	
10	<u></u>
0	JI
, i	
	350 550 550 550 550 550 550 550
	$Wavelength\lambdainnm\longrightarrow$
100	$Wavelength\lambdainnm\longrightarrow$
100	$Wavelength\lambdainnm\longrightarrow$
100 90 80	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70 60	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70 60	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70 60 50 40	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70 60 50 40	$Wavelength\lambdainnm\longrightarrow$
100 90 80 70 60 50 40 30 20	Wavelength λ in nm → Thickness 2 mm Thickness 6 mm

Version July 2018 | SCHOTT reserves the right to make specification changes in this product flyer without notice.

