BOROFLOAT® 33 – Optical Properties

The sum of its properties is what makes it unique.

BOROFLOAT[®] 33 from Germany is the world's first floated borosilicate flat glass. Its superior quality and excellent flatness combine with outstanding thermal, optical, chemical and mechanical features. The chemical composition of BOROFLOAT[®] 33 is in accordance with ASTM E 438-92 (2001), Type 1, class A. Rediscover BOROFLOAT[®] 33 and experience the infinite potential of our most versatile material platform. BOROFLOAT[®] – Inspiration through Quality.

Key benefits:

Exceptionally high transparency

- High transparency in visible and near IR- & UV range of wavelengths
- Outstanding visual quality due to colorlessness
- Low inherent fluorescence and solarisation tendency

Transmission in UV range

SCHOTT glass made of <u>ideas</u>

Optical wheel made of BOROFLOAT® 33.

Optical index of refraction	
Wavelength	Index of refraction n
435.8	1.48015
479.9	1.47676 (n _F)
546.1	1.47311(n _e)
589.3	1.47133
643.8	1.46953 (n _{c'})
656.3	1.46916

Mean reference values, not guaranteed values.

Optical data

Abbe number $(v_e = (n_e - 1) / (n_{F'} - n_{C'}))$	65.41
Refraction index $(n_d (\lambda_{587.6 \text{ nm}}))$	1.47140
Dispersion $(n_F - n_C)$	71.4 x 10 ⁻⁴
Stress-optical co-efficient (K)	4.0 x 10 ⁻⁶ mm ² N ⁻¹

Average reference values, not guaranteed values.

The effect of radiation on the transmission properties of BOROFLOAT[®] 33 are tested as follows: A mercury vapor lamp (Type HOK 4/120) with a radiation of 850 μ W/ cm² and a principle wavelength of 365 nm is used to irradiate a glass sample sized 30 x 15 x 1 mm³.

Inherent fluoresence of BOROFLOAT® 33

Some materials have the ability to emit electromagnetic radiation after being activated by high frequency short-wave radiation. This property is referred to as fluorescence. It depends on the material's purity and structural characteristics as well as the radiation's excitation energy and excitation wavelength.

BOROFLOAT® 33 is a highly transparent glass with a much lower inherent fluorescence than soda-lime glass.

Inherent fluoresence of BOROFLOAT® 33 and soda-lime glass with an excitation wavelength of 365 nm.

Further data and information available on request.

Inherent fluoresence of BOROFLOAT $^{\circ}$ 33 and soda-lime glass with an excitation wavelength of 488 nm.

Home Tech SCHOTT North America, Inc. 5530 Shepherdsville Road Louisville, KY 40228 USA Phone: +1 (502) 657-4417 Fax: +1 (502) 966-4976 Email: borofloat@us.schott.com

www.us.schott.com/borofloat

Transmission of BOROFLOAT $^{\otimes}$ 33 in comparison to borosilicate crown glass and soda-lime glass (super white).